Our website use cookies to improve and personalize your experience and to display advertisements(if any). Our website may also include cookies from third parties like Google Adsense, Google Analytics, Youtube. By using the website, you consent to the use of cookies. We have updated our Privacy Policy. Please click on the button to check our Privacy Policy.

Riesgos de sesgos algorítmicos en decisiones públicas: Guía completa

Los sesgos algorítmicos ocurren cuando sistemas basados en datos y reglas automáticas reproducen o amplifican discriminaciones existentes. Cuando estos sistemas se emplean en decisiones públicas —como justicia penal, salud, empleo, servicios sociales o vigilancia— las consecuencias pueden afectar derechos, recursos y confianza democrática. A continuación se analiza qué son, cómo aparecen, ejemplos documentados, impactos concretos y medidas de mitigación.

En qué consisten los sesgos algorítmicos

Un sesgo algorítmico se produce cuando un modelo o procedimiento automatizado produce resultados sistemáticamente desiguales para distintos grupos sociales (por sexo, raza, nivel socioeconómico, edad, lugar de residencia, etc.). Estas desigualdades pueden derivar de varias causas:

  • Datos históricos sesgados: registros administrativos que reflejan decisiones humanas previas discriminatorias.
  • Variables proxy: uso de indicadores que, sin intención, actúan como sustitutos de características protegidas (por ejemplo, zona postal como proxy de raza).
  • Falta de representatividad: muestras de entrenamiento que no incluyen suficientes casos de grupos minoritarios.
  • Objetivos mal definidos: optimizar un indicador (costes, precisión global) sin medir equidad entre grupos.
  • Retroalimentación y bucles: despliegue del sistema que altera el comportamiento y genera más datos sesgados, reforzando la desigualdad.

Muestras y situaciones registradas

  • Sistemas de evaluación de riesgo penal: diversas investigaciones académicas y periodísticas han evidenciado que ciertas herramientas diseñadas para anticipar la reincidencia solían marcar con mayor frecuencia a personas negras como de alto riesgo y a personas blancas como de bajo riesgo, pese a que las tasas reales de reincidencia eran comparables, lo que terminaba generando medidas más restrictivas para algunos grupos.
  • Herramientas de selección de personal: varias empresas tecnológicas han decidido abandonar algoritmos de selección después de constatar que perjudicaban currículos asociados a perfiles femeninos, por ejemplo, por la pertenencia a organizaciones de mujeres o por haberse graduado en instituciones con mayoría femenina.
  • Reconocimiento facial y vigilancia: distintos estudios independientes identificaron errores más frecuentes al analizar rostros de mujeres y de personas con tonos de piel más oscuros. En varios países se documentaron detenciones equivocadas derivadas de coincidencias fallidas, lo cual impulsó la imposición de moratorias y vetos locales a su uso por parte de cuerpos de seguridad.
  • Algoritmos sanitarios: algunos análisis revelaron que ciertos modelos utilizados para asignar prioridad en programas de atención intensiva infravaloraban las necesidades de pacientes pertenecientes a minorías cuando incorporaban el gasto sanitario histórico como indicador de necesidad, alejando recursos de quienes realmente los necesitaban.

Efectos y amenazas concretas en la toma de decisiones públicas

  • Discriminación institucionalizada: decisiones automatizadas pueden normalizar trato desigual en acceso a justicia, salud o empleo.
  • Pérdida de derechos y libertades: falsos positivos en vigilancia o riesgo penal pueden traducirse en detenciones, restricciones o estigmatización indebida.
  • Desigualdad en asignación de recursos: sesgos en modelos que asignan servicios sociales o sanitarios pueden privar a comunidades vulnerables de apoyos esenciales.
  • Erosión de la confianza pública: opacidad y errores sistemáticos minan la legitimidad de instituciones que delegan decisiones a algoritmos.
  • Retroalimentación negativa: más vigilancia o sanciones en un barrio generan más datos de delitos, lo que refuerza el modelo y perpetúa la sobreexposición de esa comunidad.
  • Costes económicos y legales: demandas, compensaciones y revisiones de políticas suponen gastos públicos y retrasos en servicios.

Maneras de identificar y evaluar los sesgos

La detección exige análisis desagregado por grupos relevantes y métricas de equidad además de medidas globales de rendimiento. Entre prácticas útiles:

  • Desagregación de resultados: comparar tasas de falsos positivos, falsos negativos, sensibilidad y especificidad por grupo.
  • Pruebas de impacto: simulaciones que muestran cómo cambia la distribución de beneficios y cargas antes y después del despliegue.
  • Auditorías independientes: revisión externa del código, datos y decisiones para identificar proxies discriminatorios y errores metodológicos.
  • Evaluaciones de robustez: tests con datos sintéticos y datos de poblaciones subrepresentadas.

Acciones destinadas a reducir los riesgos

  • Transparencia y documentación: difundir una descripción clara de los datos, los propósitos, las limitaciones y las métricas de equidad, además de dejar constancia de las decisiones de diseño.
  • Evaluación de impacto algorítmico: requerir análisis formales previos al despliegue en áreas delicadas que valoren riesgos y estrategias de mitigación.
  • Participación y gobernanza: integrar en el proceso a las comunidades implicadas, a entidades de derechos humanos y a especialistas de distintos ámbitos para colaborar en el diseño y la supervisión.
  • Datos representativos y limpieza: ampliar la diversidad y calidad de los datos y suprimir proxies que puedan perpetuar sesgos discriminatorios.
  • Supervisión humana significativa: asegurar que exista intervención humana en decisiones finales de alto riesgo y preparar a los responsables para identificar fallos.
  • Auditorías periódicas: aplicar revisiones externas de forma constante con el fin de encontrar deterioros del modelo y consecuencias imprevistas.
  • Límites de uso: vetar o limitar la utilización de algoritmos en resoluciones irreversibles o de gran trascendencia cuando no haya garantías firmes de equidad.

Recomendaciones para políticas públicas

  • Marco regulatorio claro: definir con precisión obligaciones de transparencia, establecer derechos de explicación y fijar normas de responsabilidad para las entidades públicas que recurran al uso de algoritmos.
  • Protocolos de prueba antes del despliegue: realizar pilotos supervisados junto con evaluaciones que valoren impactos sociales y de derechos humanos.
  • Creación de unidades de auditoría pública: conformar equipos técnicos independientes encargados de examinar modelos, datos y decisiones, y de divulgar resultados comprensibles para la población.
  • Acceso a recursos y reparación: habilitar mecanismos que permitan a las personas afectadas pedir una revisión humana y obtener medidas de reparación cuando exista un perjuicio.
  • Capacitación y alfabetización digital: preparar a funcionarios y ciudadanía para reconocer las limitaciones y riesgos asociados a la inteligencia artificial y al aprendizaje automático.

Los sesgos algorítmicos presentes en decisiones públicas no se reducen a simples fallos técnicos, sino que también expresan y pueden intensificar desigualdades sociales existentes. Su riesgo proviene de la escala en la que operan y de la apariencia de neutralidad que da respaldo a decisiones que, en realidad, podrían reproducir prejuicios históricos o errores en los modelos. Para enfrentarlos de manera eficaz, se requiere una combinación de salvaguardas técnicas, como datos más sólidos, auditorías y métricas de equidad, junto con marcos éticos y legales que demanden transparencia, participación ciudadana y responsabilidad. Solo mediante este equilibrio la automatización puede actuar en favor del interés público sin vulnerar derechos ni ampliar brechas sociales, manteniendo a las personas y la rendición de cuentas como eje de la toma de decisiones.

Por Edwin Soliz Vaca

Descubre más